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Preface to the Third Edition

Welcome to the third edition of Probability of Risk Management (PRM).
The purpose of modernizing this textbook was to bring it up-to-date while
retaining the successful style of the past. In this update, we thoroughly
revised the text. In particular, the following topics have been enhanced
or added: bivariate normal distribution, probability generating functions,
coefficient of variation, order statistics, and correlation coefficient. Exam-
ples and exercises have also been updated to help better prepare students
planning on taking the P-exam.

This text provides a first course in probability for students with a basic
calculus background. It has been designed for students who are mostly
interested in the applications of the probability to risk management in vital
modern areas such as insurance, finance, economics, and health sciences.
The text has many features which are tailored for those students and has
complete coverage of the SOA Exam P syllabus for those studying for this
exam.

The practical and intuitive style of the text is a fundamental feature
of this book. Lack of formal proofs does not correspond to a lack of basic
understanding. A well-chosen tree example shows most students what
Bayes’ Theorem is really doing. A simple expected value calculation for
the exponential distribution or a polynomial density function demonstrates
how expectations are found. We strive to make sure the student feels that
he or she understands each concept.

We have also brought on a new author, Jelena Milovanovic, ACIA,
AIAA, PHD at Arizona State University. She has brought her teaching
knowledge and a fresh perspective to the material to improve the student
experience.

The authors would like to thank the third edition review team at AC-
TEX for their editorial work and continual support on their third round
of the text adventure.

Matt Hassett Tempe, Arizona

Jelena Milovanovic June 11, 2021
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1

Probability: A Tool for Risk
Management

1.1 Who Uses Probability?
Probability theory is used for decision-making and risk management
throughout modern civilization. Individuals use probability daily, whether
or not they know the mathematical theory in this text. If a weather fore-
caster says that there is a 90% chance of rain, people carry umbrellas. The
“90% chance of rain” is a statement of a probability. If a doctor tells a
patient that a surgery has a 50% chance of an unpleasant side effect, the
patient may want to look at other possible forms of treatment. If a famous
stock market analyst states that there is a 90% chance of a severe drop
in the stock market, people sell stocks. All of us make decisions about
the weather, our finances, and our health based on percentage statements
which are really probability statements.

Because probabilities are so important in our analysis of risk, profes-
sionals in a wide range of specialties study probability. Weather experts
use probability to derive the percentages given in their forecasts. Medi-
cal researchers use probability theory in their study of the effectiveness of
new drugs and surgeries. Wall Street firms hire mathematicians to apply
probability in the study of investments.

The insurance industry has a long tradition of using probability to
manage its risks. If you want to buy car insurance, the price you will
pay is based on the probability that you will have an accident. This price
is called a premium. Life insurance becomes more expensive to purchase
as you get older, because there is a higher probability that you will die.
Group health insurance rates are based on the study of the probability
that the group will have a certain level of claims.

1



2 Chapter 1

The professionals who are responsible for the risk management and pre-
mium calculation in insurance companies are called actuaries. Actuaries
take a long series of exams to become certified, and those exams empha-
size mathematical probability because of its importance in insurance risk
management. Probability is also used extensively in investment analysis,
banking, and corporate finance. To illustrate the application of probability
in financial risk management, the next section gives a simplified example
of how an insurance rate might be set using probabilities.

1.2 An Example from Insurance
In 2009, deaths from motor vehicle accidents occurred at a rate of 10.8 per
100,000 population1. This is really a statement of a probability. A math-
ematician would say that the probability of death from a motor vehicle
accident in the next year is 10.8/100,000 = .000108.

Suppose that you decide to sell insurance and offer to pay $10,000 if an
insured person dies in a motor vehicle accident. (The money will go to a
beneficiary who is named in the policy – perhaps a spouse, a close friend,
or the actuarial program at your alma mater.) Your idea is to charge for
the insurance and use the money obtained to pay off any claims that may
occur. The tricky question is what to charge.

You are optimistic and plan to sell 1,000,000 policies. If you believe
the rate of 10.8 deaths from motor vehicles per 100,000 population still
holds today, you would expect to have to pay 108 claims on your 1,000,000
policies. You will need 108(10,000) = $1,080,000 to pay those claims. Since
you have 1,000,000 policyholders, you can charge each one a premium of
$1.08. The charge is small, but 1.08(1,000,000) = $1,080,000 gives you the
money you will need to pay claims.

This example is oversimplified. In the real insurance business you would
earn interest on the premiums until the claims had to be paid. There
are other more serious questions. Should you expect exactly 108 claims
from your 1,000,000 clients just because the national rate is 10.8 claims
in 100,000? Does the 2009 rate still apply? How can you pay expenses
and make a profit in addition to paying claims? To answer these questions
requires more knowledge of probability, and that is why this text does not
end here. However, the oversimplified example makes a point. Knowledge
of probability can be used to pool risks and provide useful goods like
insurance. The remainder of this text will be devoted to teaching the
basics of probability to students who wish to apply it in areas such as
insurance, investments, finance, and medicine.

1Statistical Abstract of the United States, 2012. Table No. 1103, page 693.
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1.3 Probability and Statistics
Statistics is a discipline based on probability that makes inferences from
sample data to solve problems. For example, statisticians are responsible
for the opinion polls that appear almost every day in the news. In such
polls, a sample of a few thousand voters are asked to answer a question
such as “Do you think the president is doing a good job?” The results of
this sample survey are used to make an inference about the percentage of
all voters who think that the president is doing a good job. The insurance
problem in Section 1.2 requires use of both probability and statistics. In
this text, we will not attempt to teach statistical methods, but we will
discuss a great deal of probability theory that is useful in statistics. It
is best to defer a detailed discussion of the difference between probability
and statistics until the student has studied both areas. It is useful to keep
in mind that the disciplines of probability and statistics are related, but
not exactly the same.

1.4 Some History
The origins of probability are a piece of everyday life; the subject was
developed by people who wished to gamble intelligently. Although games
of chance have been played for thousands of years, the development of
a systematic mathematics of probability is more recent. Mathematical
treatments of probability appear to have begun in Italy in the latter part
of the fifteenth century. A gambler’s manual, which considered interesting
problems in probability, was written by Cardano (1500-1572).

The major advance that led to the modern science of probability was
the work of the French mathematician Blaise Pascal. In 1654 Pascal was
given a gaming problem by the gambler Chevalier de Mere. The problem of
points dealt with the division of proceeds of an interrupted game. Pascal
entered into correspondence with another French mathematician, Pierre
de Fermat. The problem was solved in this correspondence, and this work
is regarded as the starting point for modern probability.

It is important to note that within twenty years of Pascal’s work, differ-
ential and integral calculus was being developed (independently) by New-
ton and Leibniz. The subsequent development of probability theory relied
heavily on calculus.

Probability theory developed at a steady pace during the eighteenth
and nineteenth centuries. Contributions were made by leading scientists
such as Jacob Bernoulli, de Moivre, Laplace, Legendre, Gauss and Poisson.
Their contributions paved the way for very rapid growth of probability
theory in the twentieth century.
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Probability is of more recent origin than most of the mathematics cov-
ered in university courses. The computational methods of freshman cal-
culus were known in the early 1700’s, but many of the probability dis-
tributions in this text were not studied until the 1900’s. The applica-
tions of probability in risk management are even more recent. For exam-
ple, the foundations of modern portfolio theory were developed by Harry
Markowitz [Markowitz, 1952] in 1952. The probabilistic study of mortgage
prepayments was developed in the late 1980’s to study financial instru-
ments, which were first created in the 1970’s and early 1980’s.

It would appear that actuaries have a longer tradition of use of proba-
bility; a text on life contingencies was published in 1771. However, modern
stochastic probability models did not seriously influence the actuarial pro-
fession until the 1970’s, and actuarial researchers are now actively working
with the new methods developed for use in modern finance. The July
2005 copy of the North American Actuarial Journal, which is sitting on
my desk, has articles with titles like “Minimizing the Probability of Ruin
When Claims Follow Brownian Motion With Drift.” You can’t read this
article unless you know the basics contained in this book and some more
advanced topics in probability.

Probability is a young area, with most of its growth in the twentieth
century. It is still developing rapidly and being applied in a wide range
of practical areas. The history is of interest, but the future will be much
more interesting.

1.5 Computing Technology
Modern computing technology has made some practical problems easier to
solve. Many probability calculations involve rather difficult integrals; we
can now compute these numerically using computers or modern calcula-
tors. Some problems are difficult to solve analytically but can be studied
using computer simulation. In this text we will give examples of the use
of technology in most sections. We will refer to results obtained using
the TI-30XS Multiview and TI BA II Plus Professional calculators, Mi-
crosoft EXCEL, and R, but will not attempt to teach the use of those
tools. The technology sections will be clearly boxed off to separate them
from the remainder of the text. Students who do not have the techno-
logical background should be aware that this will in no way restrict their
understanding of the theory. However, the technology discussions should
be valuable to the many students who already use modern calculators or
computer packages.
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2

Counting for Probability

2.1 What is Probability?
People who have never studied the subject understand the intuitive ideas
behind the mathematical concept of probability. Teachers (including the
authors of this text) usually begin a probability course by asking the stu-
dents if they know the probability of a coin toss coming up heads. The
obvious answer is 50% or 1/2, and most people give the obvious answer
with very little hesitation. The reasoning behind this answer is simple.
There are two possible outcomes of the coin toss, heads or tails. If the
coin comes up heads, only one of the two possible outcomes has occurred.
There is one chance in two of tossing a head.

The simple reasoning here is based on an assumption – the coin must
be fair, so that heads and tails are equally likely. If your gambler friend
Fast Eddie invites you into a coin tossing game, you might suspect that he
has altered the coin so that he can get your money. However, if you are
willing to assume that the coin is fair, you count possibilities and come up
with 1/2.

Probabilities are evaluated by counting in a wide variety of situations.
Gambling related problems involving dice and cards are typically solved
using counting. For example, suppose you are rolling a fair single six-sided
die. You wish to bet on the event that you will roll a number less than 5.
The probability of this event is 2/3 since the outcomes 1, 2, 3 and 4 are
less than 5, and there are six possible outcomes (assumed equally likely).
The approach to probability used is summarized as follows:

Probability by Counting for Equally Likely Outcomes

Probability of an event = Number of outcomes in the event
Total number of possible outcomes

5
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Part of the work of this chapter will be to introduce a more precise
mathematical framework for this counting definition. However, this is
not the only way to view probability. There are some cases in which
outcomes may not be equally likely. A die or a coin may be altered so
that all outcomes are not equally likely. Suppose that you are tossing
a coin and suspect that it is not fair. Then the probability of tossing
a head cannot be determined by counting, but there is a simple way to
estimate that probability – simply toss the coin a large number of times
and count the number of heads. If you toss the coin 1000 times and
observe 650 heads, your best estimate of the probability of a head on one
toss is 650/1,000 = .65. In this case you are using a relative frequency
estimate of a probability.

Relative Frequency Estimate of the Probability of an
Event

Probability of an event = Number of favorable outcomes
Total number trials

We now have two ways of looking at probability: the counting approach
for equally likely outcomes and the relative frequency approach. This
raises an interesting question. If outcomes are equally likely, will both
approaches lead to the same probability? For example, if you try to find
the probability of tossing a head for a fair coin by tossing the coin a large
number of times, should you expect to get a value of 1/2? The answer to
this question is “not exactly, but for a very large number of tosses you are
highly likely to get an answer close to 1/2.” The more tosses, the more
likely you are to be very close to 1/2. We used R to simulate different
numbers of coin tosses, and came up with the following results.

Number of Tosses Number of Heads Probability Estimate
4 1 .2500

100 54 .5400

1000 524 .5240

10000 4985 .4985

More will be said later in the text about the mathematical reasoning
underlying the relative frequency approach. Many texts identify a third
approach to probability. That is the subjective approach to probability.
Using this approach, you ask a well-informed person for his or her personal
estimate of the probability of an event. For example, one of your authors
worked on a business valuation problem which required knowledge of the
probability that an individual would fail to make a monthly mortgage
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payment to a company. He went to an executive of the company and
asked what percent of individuals failed to make the monthly payment in
a typical month. The executive, relying on his experience, gave an estimate
of 3%, and the valuation problem was solved using a subjective probability
of .03. The executive’s subjective estimate of 3% was based on a personal
recollection of relative frequencies he had seen in the past.

In the remainder of this chapter we will work on building a more precise
mathematical framework for probability. The counting approach will play
a big part in this framework, but the reader should keep in mind that
many of the probability numbers actually used in calculation may come
from relative frequencies or subjective estimates.

2.2 The Language of Probability: Sets, Sample
Spaces, and Events

If probabilities are to be evaluated by counting outcomes of a probability
experiment, it is essential that all outcomes be specified. A person who is
not familiar with dice does not know that the possible outcomes for a single
fair die are 1, 2, 3, 4, 5 and 6. That person cannot find the probability of
rolling a 1 with a single die because the basic outcomes are unknown. In
every well-defined probability experiment, all possible outcomes must be
specified in some way.

The language of set theory is very useful in the analysis of outcomes.
Sets are covered in most modern mathematics courses, and the reader is
assumed to be familiar with some set theory. For the sake of completeness,
we will review some of the basic ideas of set theory. A set is a collection
of objects such as the numbers 1, 2, 3, 4, 5 and 6. These objects are called
the elements or members of the set. If the set is finite and small enough
that we can easily list all of its elements, we can describe the set by listing
all of its elements in braces. For the set above, S = {1, 2, 3, 4, 5, 6}. For
large or infinite sets, the set-builder notation is helpful. For example, the
set of all positive real numbers may be written as

S = {x | x is a real number and x > 0}.

Often it is assumed that the numbers in question are real numbers, and
the set above is written as S = {x | x > 0}.

We will review more set theory as needed in this chapter. The impor-
tant use of set theory here is to provide a precise language for dealing with
the outcomes in a probability experiment. The definition below uses the
set concept to refer to all possible outcomes of a probability experiment.

https://www.actuarialuniversity.com/
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8 Chapter 2

Definition 2.1. The sample space for a probability experiment is the
set of all possible outcomes of the experiment, and is usually denoted by
S.

Example 2.1. A single die is rolled and the number facing up recorded.
The sample space is S = {1, 2, 3, 4, 5, 6}.

Example 2.2. A coin is tossed and the side facing up is recorded.
The sample space is S = {H,T}.

Many interesting applications involve a simple two-element sample
space. The following examples are of this type.

Example 2.3. An insurance company is interested in the probability
that an insured will die in the next year. The sample space is S ={death,
survival}.

Example 2.4. A manufacturer is interested in the probability that a
crucial part in a machine will fail in the next week. The sample space is
S ={failure, survival}.

Example 2.5. Companies borrow money they need by issuing bonds.
A bond is typically sold in $1000 units that have a fixed interest rate such
as 8% per year for twenty years. When you buy a bond for $1000, you
are actually loaning the company your $1000 in return for 8% interest
per year. You are supposed to get your $1000 loan back in twenty years.
If the company issuing the bonds has financial trouble, it may declare
bankruptcy and default by failing to pay your money back. Investors who
buy bonds wish to find the probability of default. The sample space is S =
{default, no default}.

Example 2.6. Homeowners usually buy their homes by getting a
mortgage loan that is repaid by monthly payments. The homeowner usu-
ally has the right to pay off the mortgage loan early if that is desirable –
because the homeowner decides to move and sell the house, because inter-
est rates have gone down, or because someone has won the lottery. Lenders
may lose or gain money when a loan is prepaid early, so they are interested
in the probability of prepayment. If the lender is interested in whether the
loan will prepay in the next month, the sample space is S ={prepayment,
no prepayment}.

The simple sample spaces above are all of the same type. Something
(a bond, a mortgage, a person, or a part) either continues or disappears.
Despite this deceptive simplicity, the probabilities involved are of great
importance. If a part in your airplane fails, you may become an insurance
death – leading to the prepayment of your mortgage using your death
benefit and thus putting a strain on your insurance company and its bonds.
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The probabilities are difficult and costly to estimate. Note also that the
coin toss sample space {H,T} was the only one in which the two outcomes
were equally likely. Luckily for most of us, insured individuals are more
likely to live than die, and bonds are more likely to succeed than to default.

Not all sample spaces are so small or so simple.

Example 2.7. An insurance company has sold 100 individual life
insurance policies. When an insured individual dies, the beneficiary named
in the policy will file a claim for the amount of the policy. You wish to
observe the number of claims filed in the next year. The sample space
consists of all integers from 0 to 100, so S = {0, 1, 2, . . . , 100}.

Some of the previous examples may be looked at in slightly different
ways that lead to different sample spaces. The sample space is determined
by the question you are asking.

Example 2.8. An insurance company sells life insurance to a 30-year-
old female. The company is interested in the age of the insured when she
eventually dies. If the company assumes that the insured will not live to
110, the sample space is S = {30, 31, . . . , 109}.

Example 2.9. A mortgage lender makes a 30-year monthly payment
loan. The lender is interested in studying the month in which the mortgage
is paid off. Since there are 360 months in 30 years, the sample space is
S = {1, 2, 3, . . . , 359, 360}.

The sample space can also be infinite.

Example 2.10. A stock is purchased for $100. You wish to observe
the price it can be sold for in one year. Since stock prices are quoted
in dollars and fractions of dollars, the stock could have any non-negative
rational number as its future value. The sample space consists of all non-
negative rational numbers, S = {x | x ≥ 0 and x rational}. This does not
imply that the price outcome of $1,000,000,000 is highly likely in one year
– just that it is possible. Note that the price outcome of 0 is also possible.
Stocks can become worthless.

The above examples show that the sample space for an experiment can
be a small finite set, a large finite set, or an infinite set.

In Section 2.1 we looked at the probability of events which were speci-
fied in words, such as “toss a head” or “roll a number less than 5”. These
events also need to be translated into clearly specified sets. For example,
if a single die is rolled, the event “roll a number less than 5” consists of
the outcomes in the set E = {1, 2, 3, 4}. Note that the set E is a subset
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of the sample space S, since every element of E is an element of S. This
leads to the following set-theoretical definition of an event.

Definition 2.2. Any subset E of the sample space S is called an event.

This set-theoretic definition of an event often causes some unnecessary
confusion since people think of an event as something described in words
like “roll a number less than 5 on a roll of a single die”. There is no
conflict here. The definition above reminds you that you must take the
event described in words and determine precisely what outcomes are in
the event. Below we give a few examples of events that are stated in words
and then translated into subsets of the sample space.

Example 2.11. A coin is tossed. You wish to find the probability of
the event “toss a head”. The sample space is S = {H,T}. The event is the
subset E = {H}.

Example 2.12. An insurance company has sold 100 individual life
policies. The company is interested in the probability that at most 5 of
the policies have death benefit claims in the next year. The sample space
is S = {0, 1, 2, . . . , 100}. The event E is the subset {0, 1, 2, 3, 4, 5}.

Example 2.13. You buy a stock for $100 and plan to sell it one year
later. You are interested in the event that you make a profit when the
stock is sold. The sample space is S = {x | x ≥ 0 and x rational}, the
set of all possible future prices. The event is the subset E = {x | x >
100 and x rational}, the set of all possible future prices that are greater
than the $100 you paid.

Problems involving selections from a standard 52 card deck are com-
mon in beginning probability courses. Such problems reflect the origins of
probability. To make listing simpler in card problems, we will adopt the
following abbreviation system:

A – Ace K – King Q – Queen J – Jack

S – Spade H – Heart D – Diamond C – Club

We can then describe individual cards by combining letters and numbers.
For example KH will stand for the king of hearts and 2D for the 2 of
diamonds.

Example 2.14. A standard 52 card deck is shuffled, and a card is
picked at random. You are interested in the event that the card is a king.
The sample space, S = {AS,KS, . . . , 3C, 2C}, consists of all 52 cards. The
event E consists of the four kings, E = {KS,KH,KD,KC}.
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The examples of sample spaces and events given above are straight for-
ward. In many practical problems things become much more complex. The
following sections introduce more set theory and some counting techniques
that will help in analyzing more difficult problems.

2.3 Compound Events; Set Notation
When we refer to events in ordinary language, we often negate them (the
card drawn is not a king) or combine them using the words “and” or “or”
(the card drawn is a king or an ace). Set theory has a convenient notation
for use with such compound events.

2.3.1 Negation

The event not E is written as ∼E. (This may also be written as E.)

Example 2.15. A single die is rolled, S = {1, 2, 3, 4, 5, 6}. The event
E is the event of rolling a number less than 5, so E = {1, 2, 3, 4}. E does
not occur when a 5 or 6 is rolled. Thus ∼E = {5, 6}.

Note that the event ∼E is called the complement of E and is the set
of all outcomes in the sample space that are not in the original event set
E.

Example 2.16. You buy a stock for $100 and wish to evaluate the
probability of selling it for a higher price x in one year.
The sample space is S = {x | x ≥ 0 and x rational}.
The event of interest is E = {x | x > 100 and x rational}.
The negation ∼E is the event that no profit is made on the sale,
so ∼E can be written as

∼E = {x | 0 ≤ x ≤ 100 and x rational}.

This can be portrayed graphically on a number line.

∼E – no profit E – profit

0 100

Graphical depiction of events is very helpful. The most common tool
for this is the Venn diagram in which the sample space is portrayed as
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a rectangular region, and the event is portrayed as a circular region inside
the rectangle.

The Venn diagram showing E and ∼E is given in the following figure.

E

∼E

2.3.2 The Compound Events E or F , E and F

We will begin by returning to the familiar example of rolling a single die.
Suppose that we have the opportunity to bet on two different events:

E – an even number is rolled F – a number less than 5 is rolled

E = {2, 4, 6} F = {1, 2, 3, 4}

If we bet that E or F occurs, we will win if any element of the two sets
above is rolled.

E or F = {1, 2, 3, 4, 6}

In forming the set for E or F we have combined the sets E and F by listing
all outcomes that appear in either E or F . The resulting set is called the
union of E and F and is written as E ∪ F. The union for any two events
E and F can be represented as

E or F = E ∪ F.

For the single die roll above, we could also decide to bet on the event E
and F . In that case, both the event E and the event F must occur on the
single roll. This can happen only if an outcome occurs that is common to
both events.

E and F = {2, 4}

In forming the set E and F we have listed all outcomes that are in both
sets simultaneously. This set is referred to as the intersection of E and
F and is written as E ∩ F. The intersection for any two events E and F
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can be represented as

E and F = E ∩ F.

Example 2.17. Consider the insurance company that has written 100
individual life insurance policies and is interested in the number of claims
that will occur in the next year. The sample space is S = {0, 1, 2, . . . , 100}.
The company is interested in the following two events:

E – there are at most 8 claims

F – the number of claims is between 5 and 12 (inclusive)

E and F are given by the sets

E = {0, 1, 2, 3, 4, 5, 6, 7, 8}

and

F = {5, 6, 7, 8, 9, 10, 11, 12}.

Then the events (E or F ) and (E and F ) are given by

E or F = E ∪ F = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

and

E and F = E ∩ F = {5, 6, 7, 8}.

The events (E or F ) and (E and F ) can also be represented using Venn
diagrams, with overlapping circular regions representing E and F .

E F

E ∪ F

E F

E ∩ F
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2.3.3 New Sample Spaces from Old; Ordered Pair Outcomes

In some situations the basic outcomes of interest are actually pairs of
simpler outcomes. The following examples illustrate this.
Example 2.18. Life insurance is often written on a couple. Suppose
the insurer is interested in whether one or both members of the couple die
in the next year. Then the insurance company must start by considering
the following outcomes:

D1 – death of Partner 1 S1 – survival of Partner 1

D2 – death of Partner 2 S2 – survival of Partner 2

Since the insurance company has written a policy insuring both partners,
the sample space of interest consists of pairs that show the status of both
Partner 1 and Partner 2. For example, the pair (D1, S2) describes the
outcome in which Partner 1 dies but Partner 2 survives. The sample space
is

S = {(D1, S2), (D1, D2), (S1, S2), (S1, D2)} .

In this sample space, events may be more complicated than they sound.
Consider the following event:

P1 – Partner 1 dies in the next year,

P1 = {(D1, S2}, (D1, D2)} .

The death of Partner 1 is not a single outcome. The insurance company
has insured two people and has different obligations for each of the two
outcomes in P1. The death of Partner 2 is similar.

P2 – Partner 2 dies in the next year,

P2 = {(D1, D2), (S1, D2)} .

The events P1 or P2 and P1 and P2 are also sets of pairs.

P1 ∪ P2 = {(D1, S2), (D1, D2), (S1, D2)} ,

P1 ∩ P2 = {(D1, D2)} .

Similar reasoning can be used in the study of the failure of two crucial
parts in a machine or the prepayment of two mortgages.
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2.4 Set Identities

2.4.1 The Distributive Laws for Sets

The distributive law for real numbers is the familiar

a(b+ c) = ab+ ac.

Two similar distributive laws for set operations are the following:

E ∩ (F ∪G) = (E ∩ F ) ∪ (E ∩G) (2.1)

E ∪ (F ∩G) = (E ∪ F ) ∩ (E ∪G) (2.2)

These laws are helpful in dealing with compound events involving the
connectives and and or. They tell us that

E and (F or G) is equivalent to (E and F ) or (E and G)

and

E or (F and G) is equivalent to (E or F ) and (E or G).

The validity of these laws can be seen using Venn diagrams. This is pursued
in the exercises. These identities are illustrated in the following example.

Example 2.19. A financial services company is studying a large pool
of individuals who are potential clients. The company offers to sell its
clients stocks, bonds, and life insurance. The events of interest are the
following:

S – the individual owns stocks

B – the individual owns bonds

I – the individual has life insurance coverage

The distributive laws tell us that

I ∩ (B ∪ S) = (I ∩B) ∪ (I ∩ S)
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and

I ∪ (B ∩ S) = (I ∪B) ∩ (I ∪ S).

The first identity states that

insured and (owning bonds or stocks)
is equivalent to

(insured and owning bonds) or (insured and owning stocks).

The second identity states that

insured or (owning bonds and stocks)
is equivalent to

(insured or owning bonds) and (insured or owning stocks).

2.4.2 De Morgan’s Laws

Two other useful set identities are the following:

∼(E ∪ F ) = (∼E ∩ ∼F ) (2.3)

∼(E ∩ F ) = (∼E ∪ ∼F ) (2.4)

These laws state that

not(E or F ) is equivalent to (not E) and (not F )

and

not(E and F ) is equivalent to (not E) or (not F ).

As before, verification using Venn diagrams is left for the exercises. The
identity is seen more clearly through an example.

Example 2.20. We return to the events S (ownership of stock) and
B (ownership of bonds) in the previous example. De Morgan’s laws state
that

∼(S ∪B) = ∼S ∩ ∼B

and

∼(S ∩B) = ∼S ∪ ∼B.
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In words, the first identity states that if you don’t own stocks or bonds,
then you don’t own stocks and you don’t own bonds (and vice versa). The
second identity states that if you don’t own both stocks and bonds, then
you don’t own stocks or you don’t own bonds (and vice versa).

De Morgan’s laws and the distributive laws are worth remembering.
They enable us to simplify events that are stated verbally or in set notation.
They will be useful in the counting and probability problems that follow.

2.5 Counting
Since many (not all) probability problems will be solved by counting out-
comes, this section will develop a number of counting principles that will
prove useful in solving probability problems.

2.5.1 Basic Rules

We will first illustrate the basic counting rules by example and then state
the general rules. In counting, we will use the convenient notation

n(E) = the number of elements in the set (or event) E.

Example 2.21. A neighborhood association has 100 families on its
membership list. 70 of the families have a credit card,2 and 50 of the
families are currently paying off a car loan. 41 of the families have both
a credit card and a car loan. A financial planner intends to call on one
of the 100 families today. The planner’s sample space consists of the 100
families in the association. The events of interest to the planner are the
following:

C – the family has a credit card L – the family has a car loan

We are given the following information:

n(C) = 70 n(L) = 50 n(L ∩ C) = 41

The planner is also interested in the answers to some other questions. For
example, the planner would first like to know how many families do not
have credit cards. Since there are 100 families and 70 have credit cards,
the number of families that do not have credit cards is 100− 70 = 30.

2In 2007, 70.2% of American families had credit cards. ([U.S. Census Bureau, 2012],
Table No. 1189.)
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This can be written using our counting notation as

n(∼C) = n(S)− n(C).

This reasoning clearly works in all situations, giving the following gen-
eral rule for any finite sample space S and event E.

n(∼E) = n(S)− n(E) (2.5)

Example 2.22. The planner in the previous example would also like
to know how many of the 100 families had a credit card or a car loan. If
the planner adds n(C) = 70 and n(L) = 50, the result of 120 is clearly
too high. This happened because in the 120 figure each of the 41 families
with both a credit card and a car loan was counted twice. To reverse the
double counting and get the correct answer, subtract 41 from 120 to get
the correct count of 79. This is written below in our counting notation.

n(C ∪ L) = n(C) + n(L)− n(C ∩ L) = 70 + 50− 41 = 79.

The reasoning in Example 2.22 also applies in general to any two events
and in any finite sample space and is referred to as the general addition
rule.

n(E ∪ F ) = n(E) + n(F )− n(E ∩ F ) (2.6)

Example 2.23. A single card is drawn at random from a well shuffled
deck. The events of interest are the following:

H – the card drawn is a heart n(H) = 13

K – the card is a king n(K) = 4

C – the card is a club n(C) = 13

The compound event H ∩K occurs when the card drawn is both a heart
and a king (i.e., the card is the king of hearts). Then n(H ∩K) = 1 and

n(H ∪K) = n(H) + n(K)− n(H ∩K) = 13 + 4− 1 = 16.

The situation is somewhat simpler if we look at the events H and C.
Since a single card is drawn, the event H ∩ C can only occur if the single
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card drawn is both a heart and a club, which is impossible. There are no
outcomes in H ∩ C, and n(H ∩ C) = 0. Then

n(H ∪ C) = n(H) + n(C)− n(H ∩ C) = 13 + 13− 0 = 26.

More simply,

n(H ∪ C) = n(H) + n(C).

The two events H and C are called mutually exclusive because they
cannot occur together. The occurrence of H excludes the possibility of C
and vice versa. There is a convenient way to write this in set notation.

Definition 2.3. The empty set is the set that has no elements and is
denoted by the symbol ∅.

In the above example, we could write H ∩ C = ∅ to show that H and
C are mutually exclusive. The same principle applies in general.

Definition 2.4. Two events E and F are mutually exclusive if E∩F = ∅.

If E and F are mutually exclusive, then

n(E ∪ F ) = n(E) + n(F ) (2.7)

2.5.2 Using Venn Diagrams in Counting Problems

Venn diagrams are helpful in visualizing all of the components of a counting
problem. This is illustrated in the following example.

Example 2.24. The following Venn diagram is labeled to completely
describe all of the components of Example 2.21. In that example the
sample space consisted of 100 families. Recall that the events of interest
were C (the family has a credit card) and L (the family has a car loan).
We were given that n(C) = 70, n(L) = 50 and n(L ∩ C) = 41. We found
that n(L ∪ C) = 79. The Venn diagram below shows all this and more.

41
29 9

C L

21
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Since n(C) = 70 and n(L ∩ C) = 41, there are 70 families with credit
cards and 41 families with both a credit card and a car loan. This leaves
70 − 41 = 29 families with a credit card and no car loan. We write the
number 29 in the part of the region for C that does not intersect L. Since
n(L) = 50, there are only 9 families with a car loan and no credit card, so
we write 9 in the appropriate region. The total number of families with
either a credit card or a car loan is clearly given by 29 + 41 + 9 = 79.
Finally, since n(S) = 100, there are 100− 79 = 21 families with neither a
credit card nor a car loan.

The numbers on the previous page could all be derived using set iden-
tities and written in the following set theoretic terms:

n(L ∩ C) = 41,

n(∼L ∩ C) = 29,

n(L ∩ ∼C) = 9,

n(∼L ∩ ∼C) = 21.

The Venn diagram can also be used in counting problems involving
three events but requires a more complicated diagram as the following
example shows.

Example 2.25. A survey of 120 students was conducted at a small
college, and it was discovered that 60 students took English, 56 took Math-
ematics, and 42 took Chemistry. 82 students took English or Mathematics,
86 took English or Chemistry, and 78 took Mathematics or Chemistry. 6
students took all three courses. How many students took exactly two
courses?

Solution. The events of interest are the following:

E – student took English n(E) = 60

M – student took Mathematics n(M) = 56

C – student took Chemistry n(C) = 42

The compound events given in the question are

n(E ∪M) = 82, n(E ∪C) = 86, n(C ∪M) = 78, and n(E ∩C ∩M) = 6.
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Using the general addition rule to find n(E ∩M), we have

n(E ∪M) = n(E) + n(M)− n(E ∩M),

so

82 = 60 + 56− n(E ∩M)

and therefore

n(E ∩M) = 34.

Applying the same strategy, we find n(E∩C) = 16 and n(M∩C) = 20. Out
of the 34 students who took English and Mathematics, 6 students also took
Chemistry, leaving 28 students who took only English and Mathematics.
Similarly, 10 students took only English and Chemistry, and 14 students
took only Mathematics and Chemistry. Therefore, 28 + 10 + 14 = 52
students took exactly two courses at the small college. The Venn diagram
below shows all this and more.

12

6

28

10 14

16 8

C

ME

26

It is worth noting that the general addition rule can be extended to
more than two events. Since three-event problems are frequently encoun-
tered, below is the corresponding general addition rule.

n(E ∪ F ∪G) =n(E) + n(F ) + n(G)

− n(E ∩ F )− n(E ∩G)− n(F ∩G)

+ n(E ∩ F ∩G)

(2.8)

It is worth a few seconds to check this identity in the preceding example.
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2.5.3 Trees

A tree gives a graphical display of all possible cases in a problem.

Example 2.26. A coin is tossed twice. The tree that gives all pos-
sible outcomes is shown below. We create one branch for each of the two
outcomes on the first toss, and then we attach a second set of branches
to each of the first to show the outcomes on the second toss. The results
of the two tosses along each set of branches are listed at the right of the
diagram.

T

T TT

H TH

H

T HT

H HH

A tree provides a simple display of all possible pairs of outcomes in
an experiment if the number of outcomes is not unreasonably large. It
would not be reasonable to attempt a tree for an experiment in which two
numbers between 1 and 100 were picked at random, but it is reasonable
to use a tree to show the outcomes for three successive coin tosses. Such
a tree is shown next.

T

T
T TTT

H TTH

H
T THT

H THH

H

T
T HTT

H HTH

H
T HHT

H HHH

Trees will be used extensively in this text as visual aids in problem
solving. Many problems in risk analysis can be better understood when
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all possibilities are displayed in this fashion. The next example gives a
tree for disease testing.

Example 2.27. A test for the presence of a disease has two possible
outcomes – positive or negative. A positive outcome indicates that the
tested person may have the disease, and a negative outcome indicates that
the tested person probably does not have the disease. Note that the test is
not perfect. There may be some misleading results. The possibilities are
shown in the tree below. We have the following outcomes of interest:

D – the person tested has the disease

∼D – the person tested does not have the disease

Y – the test is positive

∼Y – the test is negative

∼D

∼Y

Y

D

∼Y

Y

(∼D,Y )

(∼D,∼Y )

(D,Y )

(D,∼Y )

The outcome (∼D,Y ) is referred to as a false positive result. The
person tested does not have the disease, but nonetheless tests positive for
it. The outcome (D,∼Y ) is a false negative result.

2.5.4 The Multiplication Principle for Counting

The trees in the prior section illustrate a fundamental counting principle.
In the case of two coin tosses, there were two choices for the outcome at
the end of the first branch, and for each outcome on the first toss there
were two more possibilities for the second branch. This led to a total of
2×2 = 4 outcomes. This reasoning is a particular instance of a very useful
general law.
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The Multiplication Principle for Counting
Suppose that the outcomes of an experiment consist of a combina-
tion of two separate tasks or actions. Suppose there are n possi-
bilities for the first task, and that for each of these n possibilities
there are k possible ways to perform the second task. Then there
are nk possible outcomes for the experiment.

Example 2.28. A coin is tossed twice. The first toss has n = 2
possible outcomes, and the second toss has k = 2 possible outcomes. The
experiment (two tosses) has nk = 2× 2 = 4 possible outcomes.

Example 2.29. An employee of a southwestern state can choose one
of three group life insurance plans and one of five group health insurance
plans. The total number of ways she can choose her complete life and
health insurance package is 3× 5 = 15.

The validity of this counting principle can be seen by considering a tree
for the combination of tasks. There are n possibilities for the first branch,
and for each first branch there are k possibilities for the second branch.
This will lead to a total of nk combined branches. Another way to present
the rule schematically is the following:

Task 1 Task 2 Total Outcomes
n ways k ways nk ways

The multiplication principle also applies to combined experiments con-
sisting of more than two tasks. Following Example 2.26, we gave a tree
to show all possible outcomes of tossing a coin three times. There were
2×2×2 = 8 total outcomes for the combined experiment. This illustrates
the general multiplication principle for counting.

Suppose that the outcomes of an experiment consist of a combination
of k separate tasks or actions. If task i can be performed in ni ways for each
combined outcome of the remaining tasks for i = 1, . . . , k, then the total
number of outcomes for the experiment is n1×n2×· · ·×nk. Schematically,
we have the following:

Task 1 Task 2 · · · Task k Total Outcomes
n1 n2 · · · nk n1 × n2 × · · · × nk

Example 2.30. A certain mathematician owns 8 pairs of socks, 4
pairs of pants, and 10 shirts. The number of different ways he can get
dressed is 8× 4× 10 = 320. (It is important to note that this solution only
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applies if the mathematician will wear anything with anything else, which
is a matter of concern to his wife.)

The number of total possibilities in an everyday setting can be surpris-
ingly large.

Example 2.31. A restaurant has 9 appetizers, 12 main courses, and 6
desserts. Each main course comes with a salad, and there are 6 choices for
salad dressing. The number of different meals consisting of an appetizer, a
salad with dressing, a main course, and a dessert is therefore 9×6×12×6 =
3, 888.

2.5.5 Permutations

In many practical situations it is necessary to arrange objects in order.
If you were considering buying one of four different cars, you would be
interested in a 1, 2, 3, 4 ranking that ordered them from best to worst. If
you are scheduling a meeting in which there are 5 different speakers, you
must create a program that gives the order in which they speak.

Definition 2.5. A permutation of n objects is an ordered arrangement
of those objects.

The number of permutations of n objects can be found using the mul-
tiplication principle.

Example 2.32. The number of ways that four different cars can be
ranked is shown schematically below.

Rank 1 Rank 2 Rank 3 Rank 4 Total Ways to Rank
4 3 2 1 4× 3× 2× 1 = 24

The successive tasks here are to choose Ranks 1, 2, 3 and 4. At the
beginning there are 4 choices for Rank 1. After the first car is chosen,
there are 3 cars left for Rank 2. After 2 cars have been chosen, there are
only 2 cars left for Rank 3. Finally, there is only one car left for Rank
4.

The same reasoning works for the problem of arranging 5 speakers in
order. The total number of possibilities is 5 × 4 × 3 × 2 × 1 = 120. To
handle problems like this, it is convenient to use factorial notation.

n! = n(n− 1)(n− 2) · · · (2)(1).
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The notation n! is read as “n factorial”. The reasoning used in the
previous examples leads to another counting principle.

First Counting Principle for Permutations
The number of permutations of n objects is n!.

Note: 0! is defined to be 1, the number of ways to arrange 0
objects.

Example 2.33. The manager of a youth baseball team has chosen
nine players to start a game. The total number of batting orders that is
possible is the number of ways to arrange nine players in order, namely
9! = 9×8×7×6×5×4×3×2×1 = 362, 880. (When the authors coached
youth baseball, another coach stated that he had looked at all possible
batting orders and had picked the best one. Sure.)

The previous example shows that the number of permutations of ob-
jects can be surprisingly large. Factorials grow rapidly as n increases, as
shown in the following table.

n n!

1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40,320
9 362,880
10 3,628,800
11 39,916,800

The number 52! has 68 digits and is too long to bother with presenting
here. This may interest card players, since 52! is the number of ways that
a standard card deck can be put in order (shuffled).
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Some problems involve arranging only some of the objects in order.

Example 2.34. Ten students are finalists in a scholarship competition.
The top three students will receive scholarships for $1000, $500 and $200.
The number of ways the scholarships can be awarded is found as follows:

Rank 1 10

Rank 2 9

Rank 3 8

Total Ways to Rank 10× 9× 8 = 720

This is similar to Example 2.32. Any one of the 10 students can win the
$1000 scholarship. Once that is awarded, there are only 9 left for the $500.
Finally, there are only 8 left for the $200. Note that we could also write

10× 9× 8 =
10!

7!
=

10!

(10− 3)!
.

Example 2.34 is referred to as a problem of permuting 10 objects taken
3 at a time.

Definition 2.6. A permutation of n objects taken r at a time is an ordered
arrangement of r of the original n objects, where r ≤ n.

The reasoning used in the previous example can be used to derive a
counting principle for permutations.

Second Counting Principle for Permutations
The number of permutations of n objects taken r at a time is de-
noted by P (n, r) or nPr.

P (n, r) = n(n− 1) · · · (n− r + 1) =
n!

(n− r)!
(2.9)

Special Cases: P (n, n) = n!, P (n, 0) = 1
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TECHNOLOGY NOTE
Calculation of P (n, r) is simple using modern calculators. In-

expensive scientific calculators typically have a factorial function
key. This makes the above computation of P (10, 3) simple – find
10! and divide it by 7!.

More powerful calculators find quantities like P (10, 3) directly.
For example:

(a) On the TI-30XS Multiview calculator, P (n, r) can be found
under PRB. If you key in 10 nPr 3, you will get the answer
720 directly.

(b) On the TI BA II Plus Professional calculator, P (n, r) is avail-
able as a 2ND function on the � key.

Because modern calculators make these computations so easy, we
will not avoid realistic problems in which answers involve large
factorials3.

Many computer packages will compute factorials. The spread-
sheet programs that are widely used on personal computers in busi-
ness also have factorial functions. For example Microsoft EXCEL
has a function FACT. The corresponding function in R is FACTO-
RIAL.

Moreover, Microsoft EXCEL has a PERMUT function to evalu-
ate P (n, r), whereas R does not directly calculate this value. P (n, r)
can be computed as factorial(n)/factorial(n− r).

In some problems involving ordered arrangements the fact of ordering
is not so obvious.

Example 2.35. The manager of a consulting firm office has 8 analysts
available for job assignments. He must pick 3 analysts and assign one to a
job in Bartlesville, Oklahoma, one to a job in Pensacola, Florida, and one
to a job in Houston, Texas. In how many ways can he do this?

Solution. This is a permutation problem, but it is not quite so obvious
that order is involved. There is no implication that the highest ranked
analyst will be sent to Bartlesville. However, order is implicit in making
assignment lists like this one. The manager must fill out the following
form:

3On most calculators, factorials quickly become too large for the display mode, and
factorials like 14! are given in scientific notation with some digits missing.
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City Analyst

Bartlesville ?

Pensacola ?

Houston ?

There is no implication that the order of the cities ranks them in any way,
but the list must be filled out with a first choice on the first line, a second
choice on the second line, and a final choice on the third line. This imposes
an order on the problem. The total number of ways the job assignment
can be done is

P (8, 3) = 8× 7× 6 =
8!

5!
= 336.

2.5.6 Combinations

In every permutation problem an ordering was stated or implied. In some
problems, order is not an issue.

Example 2.36.

A city council has 8 members. The council has decided to set up a
committee of three members to study a zoning issue. In how many ways
can the committee be selected?

Solution. This problem does not involve order, since members of a com-
mittee are not identified by order of selection. The committee consisting
of Smith, Jones and London is the same as the committee consisting of
London, Smith and Jones. However, there is a way to look at the problem
using what we already know about ordered arrangements. If we wanted to
count all the ordered selections of 3 individuals from 8 council members,
the answer would be

P (8, 3) = 336 = number of ordered selections.

In the 336 ordered selections, each group of 3 individuals is counted 3! = 6
times. (Remember that 3 individuals can be ordered in 3! ways.) Thus
the number of unordered selections of 3 individuals is

336

6
=

P (8, 3)

3!
= 56.

https://www.actuarialuniversity.com/
https://www.actuarialuniversity.com/hub?tags=70E000FC-15F2-41C7-90E8-FB66923F3063


30 Chapter 2

In the language of sets, we would say that the number of possible three-
element subsets of the set of 8 council members is 56, since a subset is a
selection of elements in which order is irrelevant.

Definition 2.7. A combination is an unordered selection of r of the
original n objects, where r ≤ n.

The number of combinations of n objects taken r at a time is denoted

by C(n, r) or

(
n

r

)
. The notation

(
n

r

)
has traditionally been more widely

used, but the C(n, r) notation is more commonly used in mathematical
calculators and computer programs, probably because it can be typed on
a single line. We will use both notations in this text.

Example 2.36 above used the reasoning that since any 3-object subset
can be ordered in 3! ways, then

C(8, 3) =

(
8

3

)
=

P (8, 3)

3!
.

Using Equation (2.9) for P (8, 3), we see that P (8, 3) = 8!
5! and thus

C(8, 3) =
8!

3!5!
=

8× 7× 6

3× 2× 1
= 56.

This reasoning applies to the r-object subsets of any n-object set, lead-
ing to the following general counting principle:

Counting Principle for Combinations

(
n

r

)
= C(n, r) =

P (n, r)

r!

=
n!

r!(n− r)!
=

n(n− 1) · · · (n− r + 1)

r!

(2.10)

Special Cases: C(n, n) = C(n, 0) = 1
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TECHNOLOGY NOTE
Any calculator with a factorial function can be used to find

C(n, r). The TI-30XS Multiview and TI-BA II Plus Professional
calculators both have functions that calculate C(n, r) directly. Mi-
crosoft EXCEL has a COMBIN function to evaluate C(n, r). The
equivalent in R is the choose function.

Example 2.37. It has become a tradition for authors of probability
and statistics texts to include a discussion of their own state lottery. In the
Arizona lottery, the player buys a ticket with six distinct numbers on it.
The numbers are chosen from the numbers 1, 2, . . . , 42. What is the total
number of possible combinations of 6 numbers chosen from 42 numbers?

Solution.

C(42, 6) =
42!

6!36!
=

42× 41× 40× 39× 38× 37

6!
= 5,245,786.

Example 2.38. In a new state lottery, a player will buy a ticket with
six distinct numbers on it. The six winning ticket numbers are chosen from
the numbers 1, 2, . . . , N and N ≥ 12. What is the maximum N for which
the number of ways of getting exactly one correct number on a ticket is the
same or greater than the number of ways of getting no correct numbers on
the ticket?

Solution. To get exactly one correct number on a ticket means that out
of six winning numbers five ticket numbers are non-winning and only one
ticket number is a winning number. The total number of ways to do this
is C(N − 6, 5)C(6, 1). Similarly, the number of ways of getting no correct
numbers on the ticket is C(N − 6, 6)C(6, 0).

To find the maximum N for which the number of ways of getting exactly
one correct number on a ticket is the same or greater than the number of
ways of getting no correct numbers on the ticket, we solve the inequality
by

C(N − 6, 5)C(6, 1) ≥ C(N − 6, 6)C(6, 0)

or
(N − 6)!

5!(N − 11)!
× 6 ≥ (N − 6)!

6!(N − 12)!
× 1.

https://www.actuarialuniversity.com/
https://www.actuarialuniversity.com/hub?tags=70E000FC-15F2-41C7-90E8-FB66923F3063
https://www.actuarialuniversity.com/hub?tags=70E000FC-15F2-41C7-90E8-FB66923F3063


32 Chapter 2

Note: This only makes sense if N ≥ 12. Then we have

5!(N − 11)! ≤ 6× 6!(N − 12)!

or

N − 11 ≤ 36

so that

N ≤ 47.

2.5.7 Combined Problems

Many counting problems involve combined use of the multiplication prin-
ciple, permutations, and combinations.

Example 2.39. A company has 20 male employees and 30 female
employees. A grievance committee of four members is to be established.
In how many ways can the committee be chosen to ensure that the majority
of the members are female?

Solution. There are two ways to ensure that the majority of the com-
mittee members are females, namely a committee with three females and
one male or a committee with all females. We will first use the multipli-
cation principle to find the number of ways of obtaining the two types of
committees.

We have the following two tasks to find the number of committees with
three females and one male:

Task 1 – choose 3 females from 30

Task 2 – choose 1 male from 20

The number of ways to choose this committee is

(Number of ways for Task 1) × (Number of ways for Task 2)

or

C(30, 3)C(20, 1) = 4060× 20 = 81,200.

We have two more tasks to find the number of committees consisting of
all females:
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Task 3 – choose 4 females from 30

Task 4 – choose 0 male from 20

The number of ways to choose this committee is

(Number of ways for Task 3) × (Number of ways for Task 4)

=C(30, 4)C(20, 0) = 27,405× 1 = 27,405.

Then the total number of possible committees with a majority of female
members is 81,200 + 27,405 = 108,605.

Example 2.40. A club has 40 members. Three of the members
are running for office and will be elected president, vice-president and
secretary-treasurer based on the total number of votes received. An ad-
visory committee with 4 members will be selected from the 37 members
who are not running for office. In how many ways can the club select its
officers and advisory committee?

Solution. In this problem, Task 1 is to rank the three candidates for
office, and Task 2 is to select a committee of 4 from 37 members. The final
answer is

3!C(37, 4) = 6× 66,045 = 396,270.

2.5.8 Partitions

Partitioning refers to the process of breaking a large group into separate
smaller groups. The combination problems previously discussed are simple
examples of partitioning problems.

Example 2.41. A company has 20 new employees to train. The com-
pany will select 6 employees to test a new computer-based training pack-
age. (The remaining 14 employees will get a classroom training course.)
In how many ways can the company select the 6 employees for the new
method?

Solution. The company can select 6 employees from 20 in C(20, 6) =
38, 760 ways. Each possible selection of 6 employees results in a partition
of the 20 employees into two groups – 6 employees for the computer-based
training and 14 for the classroom. (We would get an identical answer if we
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solved the problem by selection of the 14 employees for classroom training.)
The number of ways to partition the group of 20 into two groups of 6 and
14 is

C(20, 6) = C(20, 14) =
20!

6!14!
= 38,760.

A similar pattern develops when the partitioning involves more than
two groups.

Example 2.42. The company in the last example has now decided
to test televised classes in addition to computer-based training. In how
many ways can the group of 20 employees be divided into 3 groups with
6 chosen for computer-based training, 4 for televised classes, and 10 for
traditional classes?

Solution. The partitioning requires the following two tasks:

Task 1 – select 6 of 20 for computer-based training

Task 2 – select 4 of the remaining 14 for the televised class

Once Task 2 is completed, only 10 employees will remain and they will
take the traditional class. Thus the total number of ways to partition the
employees is

C(20, 6)C(14, 4) =
20!

6!14!
× 14!

4!10!
=

20!

6!4!10!
= 38,798,760.

The number of partitions of 20 objects into three groups of size 6, 4
and 10 is denoted by

(
20

6, 4, 10

)
.

Example 2.42 showed that

(
20

6, 4, 10

)
=

20!

6!4!10!
,. Similarly, Example 2.41

showed that

(
20

6, 14

)
=

20!

6!14!
.
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The method of Example 2.42 can be used to show that this pattern
always holds for the total number of partitions.

Counting Principle for Partitions
The number of partitions of n objects into k distinct groups of sizes
n1, n2, . . . , nk is given by

(
n

n1, n2, . . . , nk

)
=

n!

n1!n2! · · ·nk!
(2.11)

Example 2.43. An insurance company has 15 new employees. The
company needs to assign 4 to underwriting, 6 to marketing, 3 to account-
ing, and 2 to investments. In how many different ways can this be done?
(Assume that any of the 15 can be assigned to any department.)

Solution. (
15

4, 6, 3, 2

)
=

15!

4!6!3!2!
= 6,306,300.

Many counting problems can be solved using partitions if they are
looked at in the right way. Exercise 2-30, finding the number of ways to
rearrange the letters in the word MISSISSIPPI, is a classical problem that
can be done using partitions.

2.5.9 Some Useful Identities

In Example 2.41 we noted that

C(20, 6) = C(20, 14) =
20!

6!14!
= 38,760.

This is a special case of the general identity C(n, k) = C(n, n− k), or

(
n

k

)
=

(
n

n− k

)
=

n!

k!(n− k)!
.
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In Exercise 2-40, the reader is asked to show that the total number of
subsets of an n-element set is 2n. Since C(n, k) represents the number of
k-element subsets of an n-element set, we can also find the total number
of subsets of an n-element set by adding up all of the C(n, k).

2n =

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

)
.

For example,

23 =

(
3

0

)
+

(
3

1

)
+

(
3

2

)
+

(
3

3

)
= 1 + 3 + 3 + 1.

In Exercise 2-39, the reader is asked to use counting principles to derive
the familiar Binomial Theorem

(x+ y)n =

(
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·

+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn.

This is useful for expansions such as

(x+ y)4 =

(
4

0

)
x4 +

(
4

1

)
x3y +

(
4

2

)
x2y2 +

(
4

3

)
xy3 +

(
4

4

)
y4

= x4 + 4x3y + 6x2y2 + 4xy3 + y4.
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2.6 EXERCISES
2.2 The Language of Probability: Sets, Sample Spaces, and Events

2-1 Two dice are rolled and their sum is recorded. Let E be the event
in which a sum of 8 is obtained.

(a) What is the sample space, S?
(b) List the outcomes in event E.

2-2 An insurance company provides residential wildfire coverage for
homes in Arizona.

(a) What is the sample space, S, of the amount of loss?
(b) Suppose an event, E, is defined for an insurance company that

offers wildfire coverage only for property values of homes in the
price range of $100,000 to $500,000. What are the loss amounts
in E?

2.3 Compound Events; Set Notation

2-3 Two dice were rolled and their sum was recorded in Exercise 2-1.
List the outcomes

(a) where the two dice have identical face values;
(b) where the face value of the first die is twice the face value of

the second die.

2-4 An insurance company provides residential wildfire coverage for
homes in Arizona. In Exercise 2-2, event E was defined as the amount
of loss for property values of homes in the price range of $100,000 to
$500,000. Furthermore, let F be the event in which the amount of
loss is greater than $250,000.

(a) What are the elements in the event in E ∩ F?

(b) What are the elements in the event in E ∪ F?

(c) What are the elements in the event ∼F?

2.4 Set Identities

2-5 Verify the two distributive laws by drawing the appropriate Venn
diagrams.

2-6 Verify De Morgan’s laws by drawing the appropriate Venn dia-
grams.
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2.5 Counting

2-7 A company has 134 employees. There are 84 who have been
with the company more than 10 years, and 65 of those are college
graduates. There are 23 who do not have college degrees and have
been with the company less than 10 years. How many employees are
college graduates?

2-8 In a survey of 185 university students, 91 were taking a history
course, 75 were taking a biology course, and 37 were taking both.
How many were taking a course in exactly one of these subjects?

2-9 A broker deals in stocks, bonds, and commodities. In reviewing
his clients he finds that 29 own stocks, 27 own bonds, 19 own com-
modities, 11 own stocks and bonds, 9 own stocks and commodities, 8
own bonds and commodities, 3 own all three, and 11 have no current
investments. How many clients does he have?

2-10 An insurance agent sells life, health, and auto insurance. During
the year an agent met with 85 potential clients. Of these, 42 pur-
chased life insurance, 40 health insurance, 24 auto insurance, 14 both
life and health, 9 both life and auto, 11 both health and auto, and 2
purchased all three. How many of these potential clients purchased

(a) no policies;
(b) only health policies;
(c) exactly one type of insurance;
(d) life or health but not auto insurance?

2-11 A heart disease researcher has gathered data on 1400 people who
have suffered heart attacks. The researcher identifies three variables
associated with heart attack victims:

A – smoker, B – heavy drinker, C – sedentary life

The following data on the 1,400 victims has been gathered: 490 were
smokers; 450 were heavy drinkers; 400 had a sedentary lifestyle;

• 220 were both smokers and heavy drinkers;
• 200 were both smokers and had a sedentary lifestyle;
• 200 were both heavy drinkers and had a sedentary lifestyle;
• 20 were smokers, heavy drinkers, and had a sedentary lifestyle.

Determine how many victims were

(a) neither smokers, nor heavy drinkers, nor had a sedentary lifestyle;
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(b) smokers but not heavy drinkers;
(c) smokers but not heavy drinkers and did not have a sedentary

lifestyle;
(d) either smokers or heavy drinkers but did not have a sedentary

lifestyle.

2-12 In a survey of 120 students, the following data was obtained:

• 60 took English; 56 took Mathematics; 42 took Chemistry;
• 82 took English or Mathematics;
• 86 took English or Chemistry;
• 78 took Chemistry or Mathematics;
• 6 took all three subjects.

Find the number of students who took

(a) none of the three subjects;
(b) Mathematics only;
(c) exactly two subjects.

2-13 Suppose n(S) = 100, n(A ∩ B) = 25, n(∼A ∩ ∼B) = 16, and
n(A) = n(B) + 31. Find n(A).

2-14 A company is surveying its workforce of 1220 people. It finds
that 600 are male, 610 are college graduates, and 410 have children.
Furthermore, 245 are female and college graduates, 180 are female
and have children, and 240 are not graduates and have children.
Lastly, 50 are female, have a college degree, and children. Find the
number of employees that are female, do not have a college degree,
and do not have children.

2-15 A student needs a course in each of history, mathematics, for-
eign languages, and economics to graduate. In looking at the class
schedule he sees he can choose from 7 history classes, 8 mathematics
classes, 4 foreign language classes, and 7 economics classes. In how
many ways can he select the four classes he needs to graduate?

2-16 An experiment has two stages. The first stage consists of drawing
a card from a standard deck. If the card is red, the second stage
consists of tossing a coin. If the card is black, the second stage
consists of rolling a die. How many outcomes are possible?

2-17 Let X be the n-element set {x1, x2, . . . , xn}. Show that the num-
ber of subsets of X, including X and ∅, is 2n. (Hint: For each subset
A of X, define the sequence (a1, a2, . . . , an) such that ai = 1 if xi ∈ A
and 0 otherwise. Then count the number of sequences).
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2-18 An arrangement of 4 letters from the set {A,B,C,D,E, F} is
called a (four-letter) word from that set.

(a) How many four-letter words are possible if repetitions are al-
lowed?

(b) How many four-letter words are possible if repetitions are not
allowed?

2-19 Suppose any 7-digit number whose first digit is neither 0 nor
1 can be used as a telephone number. How many phone numbers
are possible if repetitions are allowed? How many are possible if
repetitions are not allowed?

2-20 A row contains 12 chairs. In how many ways can 7 people be
seated in these chairs?

2-21 At the beginning of the basketball season a sportswriter is asked
to rank the top 4 teams of the 10 teams in the XYZ conference. How
many different rankings are possible?

2-22 A club with 30 members has three officers: president, secretary,
and treasurer. In how many ways can these offices be filled?

2-23 The speaker’s table at a banquet has 10 chairs in a row. Of
the ten people to be seated at the table, 4 are left-handed and 6
are right-handed. To avoid elbowing the right-handers while eating,
the left-handed people are seated in the 4 chairs on the left. In how
many ways can these 10 people be seated?

2-24 Eight people are to be seated in a row of eight chairs. In how
many ways can these people be seated if two of them insist on sitting
next to each other?

2-25 A club with 30 members wants to have a 3-person governing
board. In how many ways can this board be chosen? (Compare with
Exercise 2-22.)

2-26 How many 5-card poker hands are possible from a deck of 52
cards?

2-27 How many 5-card poker hands consist of

(a) all hearts;
(b) all cards in the same suit;
(c) 2 aces, 2 kings and 1 jack?

2-28 In a class of 15 boys and 13 girls, the teacher wants a cast of 4
boys and 5 girls for a play. In how many ways can the teacher select
the cast?
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2-29 The Power Ball lottery uses two sets of balls: a set of white balls
numbered 1 to 55 and a set of red balls numbered 1 to 42. To play,
you select 5 of the white balls and 1 red ball. In how many ways can
you make your selection?

2-30 How many different ways are there to arrange the letters in the
word MISSISSIPPI?

2-31 An insurance company has offices in New York, Chicago, and
Los Angeles. It hires 12 new actuaries and sends 5 to New York, 3
to Chicago, and 4 to Los Angeles. In how many ways can this be
done?

2-32 A company has 9 analysts. It has a major project that has been
divided into 3 subprojects, and it assigns 3 analysts to each task. In
how ways can this be done?

2-33 Suppose that in Exercise 2-32 the company divides the 9 analysts
into 3 teams of 3 each, and each team works on the whole project.
In how many ways can this be done?

2-34 25 items are arranged in the following table:

A1 A2 A3 A4 A5

A6 A7 A8 A9 A10

A11 A12 A13 A14 A15

A16 A17 A18 A19 A20

A21 A22 A23 A24 A25

Determine the number of ways to form a distinct set of three items
such that no two of the items are in the same row or same column.

2-35 Suppose there are 20 males and 30 females in a club. In how
many ways can you select a committee of 4 people if

(a) there are no restrictions;
(b) there must be an equal number of males and females;
(c) the majority must be female;
(d) one person is president, one is vice-president, one is secretary,

and one is member-at-large;
(e) one person is president and one is vice-president?

2-36 A president, treasurer, and secretary are selected from a club
with 10 members. How many arrangements are possible if

(a) there are no restrictions;
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(b) Tom and Sam prefer not to serve together;
(c) Jake and Jenny must be together;
(d) Mike will only serve if he is president.

2-37 Expand (2s− t)4.

2-38 In the expansion of (2u− 3v)8, what is the coefficient of the term
involving u5v3?

2-39 Prove the Binomial Theorem. (Hint: How many ways can you
get the term xn−kyk from the product of n factors, each of which is
(x+ y)?)

2-40 Using the Binomial Theorem, prove that the number of subsets
of an n-element set is 2n.

2.7 Sample Actuarial Examination Problems

2-41 An auto insurance company has 10,000 policyholders. Each
policyholder is classified as young or old, male or female, and married
or single. Of these policyholders, 3000 are young, 4600 are male, and
7000 are married. The policyholders can also be classified as 1320
young males, 3010 married males, and 1400 young married persons.
Finally, 600 of the policyholders are young married males.
How many of the company’s policyholders are young, female, and
single?

2-42 A survey of 100 TV watchers revealed that over the last year

• 34 watched CBS,
• 15 watched NBC,
• 10 watched ABC,
• 7 watched CBS and NBC,
• 6 watched CBS and ABC,
• 5 watched NBC and ABC,
• 4 watched CBS, NBC, and ABC,
• 18 watched HGTV, and of these, none watched CBS, NBC, or

ABC.

How many of the 100 TV watchers did not watch any of the four
channels (CBS, NBC, ABC, or HGTV)?

https://www.actuarialuniversity.com/
https://www.actuarialuniversity.com/hub?tags=ADEF0C8B-7584-4ECB-8707-A8BBE713C6ED
https://www.actuarialuniversity.com/hub?tags=ADEF0C8B-7584-4ECB-8707-A8BBE713C6ED
https://www.actuarialuniversity.com/hub?tags=ADEF0C8B-7584-4ECB-8707-A8BBE713C6ED
https://www.actuarialuniversity.com/hub?tags=ADEF0C8B-7584-4ECB-8707-A8BBE713C6ED
https://www.actuarialuniversity.com/hub?tags=5312A050-BCE3-4075-9112-818A62F5F585&D2294359-D117-4E51-8038-010DF0429CEA&1BCB5F38-19AE-4124-B24B-167ECAA89987&E4A5830B-62FA-4FD9-90DB-AE95DE2D73E2
https://www.actuarialuniversity.com/hub?tags=5312A050-BCE3-4075-9112-818A62F5F585&D2294359-D117-4E51-8038-010DF0429CEA&1BCB5F38-19AE-4124-B24B-167ECAA89987&E4A5830B-62FA-4FD9-90DB-AE95DE2D73E2

	Preface to the Third Edition
	Probability: A Tool for Risk Management
	Who Uses Probability?
	An Example from Insurance
	Probability and Statistics
	Some History
	Computing Technology

	Counting for Probability
	What is Probability?
	The Language of Probability: Sets, Sample Spaces, and Events
	Compound Events; Set Notation
	Negation
	The Compound Events E or F, E and F
	New Sample Spaces from Old; Ordered Pair Outcomes

	Set Identities
	The Distributive Laws for Sets
	De Morgan’s Laws

	Counting
	Basic Rules
	Using Venn Diagrams in Counting Problems
	Trees
	The Multiplication Principle for Counting
	Permutations
	Combinations
	Combined Problems
	Partitions
	Some Useful Identities

	EXERCISES
	Sample Actuarial Examination Problems

	Elements of Probability
	Probability by Counting for Equally Likely Outcomes
	Definition of Probability for Equally Likely Outcomes
	Probability Rules for Compound Events
	More Counting Problems

	Probability When Outcomes Are Not Equally Likely
	Assigning Probabilities to a Finite Sample Space
	The General Definition of Probability

	Conditional Probability
	Conditional Probability by Counting
	Defining Conditional Probability
	Using Trees in Probability Problems
	Conditional Probabilities in Life Tables

	Independence
	An Example of Independent Events; The Definition of Independence
	The Multiplication Rules for Independent Events

	Bayes' Theorem
	Testing A Test: An Example
	The Law of Total Probability; Bayes' Theorem

	EXERCISES
	Sample Actuarial Examination Problems

	Discrete Random Variables
	Random Variables
	Definition of Probability for Equally Likely Outcomes
	Redefining a Random Variable
	Notation; The Distinction Between X and x

	The Probability Function of a Discrete Random Variable
	Defining the Probability Function
	The Cumulative Distribution Function

	Measuring Central Tendency: Expected Value
	Central Tendency: The Mean
	The Expected Value of Y = aX
	The Median
	The Mode

	Variance and Standard Deviation
	Measuring Variation
	The Variance and Standard Deviation of Y=aX
	Comparing Two Stocks
	Coefficient of Variation
	z-scores; Chebyshev's Theorem

	Population and Sample Statistics
	Population and Sample Mean
	Using Calculators for the Mean and Standard Deviation

	Dealing with More Than One Random Variable
	The Expected Value of the Sum X + Y
	Independence of Random Variables
	The Variance of X + Y When X and Y Are Independent

	EXERCISES
	Sample Actuarial Exam Problems

	Commonly Used Discrete Distributions
	The Binomial Distribution
	Binomial Random Variables
	Binomial Probabilities
	Mean and Variance of the Binomial Distribution
	Applications
	Checking Assumptions for Binomial Problems

	The Hypergeometric Distribution
	An Example
	The Hypergeometric Distribution
	The Mean and Variance of the Hypergeometric Distribution
	Relating the Binomial and Hypergeometric Distributions

	The Poisson Distribution
	The Poisson Distribution
	The Poisson Approximation to the Binomial for Large n and Small p
	Why Poisson Probabilities Approximate Binomial Probabilities
	Derivation of the Expected Value of a Poisson Random Variable

	The Geometric Distribution
	Waiting Time Problems
	The Mean and Variance of the Geometric Distribution
	The Cumulative Distribution for the Geometric Distribution
	An Alternate Formulation of the Geometric Distribution
	Using the Survival Function to Find the Mean of a Counting  Random Variable
	The Memoryless Property of the Geometric Distribution

	The Negative Binomial Distribution
	Relation to the Geometric Distribution
	The Mean and Variance of the Negative Binomial Distribution

	The Discrete Uniform Distribution
	EXERCISES
	Sample Actuarial Examination Problems

	Applications for Discrete Random Variables
	Functions of Random Variables and Their Expectations
	The Function Y=aX+b
	Analyzing Y=f(X) in General
	Expected Value of a Loss or Claim
	Expected Utility

	Moments and the Moment Generating Function
	Moments of a Random Variable
	The Moment Generating Function
	Moment Generating Function for the Binomial Random Variable
	Moment Generating Function for the Poisson Random Variable
	Moment Generating Function for the Geometric Random Variable
	Moment Generating Function for the Negative Binomial  Random Variable
	Moment Generating Function for the Discrete Uniform Random  Variable
	Other Uses of the Moment Generating Function
	Useful Identity and Shortcuts
	Infinite Series and the Moment Generating Function
	The Probability Generating Function

	Distribution Shapes
	Simulation of Discrete Distributions
	A Coin-Tossing Example
	Generating Random Numbers from [0,1)
	Simulating Any Finite Discrete Distribution
	Simulating A Binomial Distribution
	Simulating A Geometric Distribution
	Simulating A Negative Binomial Distribution
	Simulating Other Distributions

	EXERCISES
	Sample Actuarial Exam Problems

	Continuous Random Variables
	Defining a Continuous Random Variable
	A Basic Example
	The Density Function and Probabilities for Continuous Random  Variables
	Building a Straight-Line Density Function for an Insurance Loss
	The Cumulative Distribution Function F(x)
	A Piecewise Density Function

	The Mode, the Median, and Percentiles
	The Mean and Variance of a Continuous Random Variable
	The Expected Value of a Continuous Random Variable
	The Expected Value of a Function of a Random Variable
	Finding E(X) using F(X)
	The Variance of a Continuous Random Variable

	Dealing with More Than One Random Variable
	EXERCISES
	Sample Actuarial Examination Problems

	Commonly Used Continuous Distribution
	The Uniform Distributions
	The Uniform Density Function
	The Cumulative Distribution Function for a Uniform Random Variable
	Uniform Random Variables for Lifetimes; Survival Functions
	The Mean and Variance of the Uniform Distribution
	A Conditional Probability Problem Involving the Uniform Distribution

	The Exponential Distribution
	Mathematical Preliminaries
	The Exponential Density: An Example
	The Exponential Density Function
	The Cumulative Distribution Function and Survival Function of the  Exponential Random Variable
	The Mean and Variance of the Exponential Distribution
	Another Look at the Meaning of the Density Function
	The Failure (Hazard) Rate
	Use of the Cumulative Distribution Function
	Why the Waiting Time Is Exponential for Events Whose Number Follows a Poisson Distribution
	A Conditional Probability Problem Involving the Exponential  Distribution

	The Gamma Distribution
	Applications of the Gamma Distribution
	The Gamma Density Function
	Sums of Independent Exponential Random Variables
	The Mean and Variance of the Gamma Distribution
	Notational Differences Between Texts

	The Normal Distribution
	Applications of the Normal Distribution
	The Normal Density Function
	Calculation of Normal Probabilities; The Standard Normal
	Sums of Independent, Identically Distributed, Random Variables
	Percentiles of the Normal Distribution
	The Continuity Correction

	The Lognormal Distribution
	Applications of the Lognormal Distribution
	Defining the Lognormal Distribution
	Calculating Probabilities for a Lognormal Random Variable
	The Lognormal Distribution for a Stock Price

	The Pareto Distribution
	Application of the Pareto Distribution
	The Density Function of the Pareto Random Variable
	The Cumulative Distribution Function; Evaluating Probabilities
	The Mean and Variance of the Pareto Distribution
	The Failure Rate of a Pareto Random Variable

	The Weibull Dstribution
	Application of the Weibull Distribution
	The Density Function of the Weibull Distribution
	The Cumulative Distribution Function and Probability Calculations
	The Mean and Variance of the Weibull Distribution
	The Failure Rate of a Weibull Random Variable

	The Beta Distribution
	Applications of the Beta Distribution
	The Density Function of the Beta Distribution
	The Cumulative Distribution Function and Probability Calculations
	A Useful Identity
	The Mean and Variance of the Beta Random Variable

	Fitting Theoretical Distributions to Real Problems
	EXERCISES
	Sample Actuarial Problems

	Applications for Continuous Random Variables
	Expected Value of a Function of a Random Variable
	Calculating E(to.g(X))to.
	Expected Value of a Loss or Claim
	Expected Utility

	Moment Generating Functions for Continuous Random Variables
	A Review
	The Gamma Moment Generating Function
	The Normal Moment Generating Function

	The Distribution of Y=g(X)
	An Example
	Using FX(x) to Find FY(y) for Y=g(X)
	Finding the Density Function for Y=g(X) When g(X) Has an Inverse Function

	Simulation of Continuous Distributions
	The Inverse Cumulative Distribution Function Method
	Using the Inverse Transformation Method to Simulate an  Exponential Random Variable
	Simulating Other Distributions

	Mixed Distributions
	An Insurance Example
	The Probability Function for a Mixed Distribution
	The Expected value of a Mixed Distribution
	A Lifetime Example

	A Useful Identity
	Using the Hazard Rate to Find the Survival Function

	EXERCISES
	Sample Actuarial Examination Problems

	Multivariate Distributions
	Joint Distributions for Discrete Random Variables
	The Joint Probability Function
	Marginal Distributions for Discrete Random Variables
	Using the Marginal Distributions

	Joint Distributions for Continuous Random
	Review of the Single Variable Case
	The Joint Probability Density Function for Two Continuous  Random Variables
	Marginal Distributions for Continuous Random Variables
	Using Continuous Marginal Distributions
	More General Joint Probability Calculations

	Conditional Distributions
	Discrete Conditional Distributions
	Continuous Conditional Distributions
	Conditional Expected Value

	Independence for Random Variables
	Independence for Discrete Random Variables
	Independence for Continuous Random Variables

	The Multinomial Distribution
	EXERCISES
	Sample Actuarial Examination Problems

	Applying Multivariate Distributions
	Distributions of Functions of Two Random Variables
	Functions of X and Y
	The Sum of Two Discrete Random Variables
	The Sum of Independent Discrete Random Variables
	The Sum of Continuous Random Variables
	The Sum of Independent Continuous Random Variables
	The Minimum of Two Independent Exponential Random Variables
	The Minimum and Maximum of any Two Independent Random  Variables
	Order Statistics

	Expected Values of Functions of Random Variables
	Finding E(to.g(X,Y))to.
	Finding E(X+Y)
	The Expected Value of XY
	The Covariance of X and Y
	The Variance of X+Y
	Useful Properties of Covariance
	The Correlation Coefficient
	The Bivariate Normal Distribution

	Moment Generating Functions for Sums of Independent Random Variables; Joint Moment Generating Functions
	The General Principle
	The Sum of Independent Poisson Random Variables
	The Sum of Independent and Identically Distributed Geometric  Random Variables
	The Sum of Independent Normal Random Variables
	The Sum of Independent and Identically Distributed Exponential  Random Variables
	Joint Moment Generating Functions

	The Sum of More Than Two Random Variables
	Extending the Results of Section  11.3
	The Mean and Variance of X + Y + Z
	The Sum of a Large Number of Independent and Identically Distributed Random Variables

	Double Expectation Theorems
	Conditional Expectations
	Conditional Variances

	Applying the Double Expectation Theorem; The Compound Poisson Distribution
	The Total Claim Amount for an Insurance Company: An Example  of the Compound Poisson Distribution
	The Mean and Variance of a Compound Poisson Random Variable
	Derivation of the Mean and Variance Formulas
	Finding Probabilities for the Compound Poisson S by a Normal  Approximation

	EXERCISES
	Sample Actuarial Examination Problems

	Stochastic Processes
	Simulation Examples
	Gambler's Ruin Problem
	Fund Switching
	A Compound Poisson Process
	A Continuous Process: Simulating Exponential Waiting Times
	Simulation and Theory

	Finite Markov Chains
	Examples
	Probability Calculations for Markov Processes

	Regular Markov Processes
	Basic Properties
	Finding the Limiting Matrix of a Regular Finite Markov Chain

	Absorbing Markov Chains
	Another Gambler's Ruin Example
	Probabilities of Absorption

	Further Study of Stochastic Processes
	EXERCISES

	Appendix A
	Appendix B
	Answers to the Exercises
	Bibliography



